No Image

Как форсунка впрыскивает топливо

СОДЕРЖАНИЕ
0
92 просмотров
15 мая 2019

Общий обзор системы подачи топлива
Система подачи топлива включает следующие компоненты:

1) Топливный бак (с регуляторами выделения паров топлива).
2) Топливный насос.
3) Топливный трубопровод и проходной фильтр.
4) Трубопровод подачи топлива (топливная направляющая).
5) Демпфер пульсации (во многих двигателях).
6) Топливные форсунки.
7) Форсунка холодного запуска (во многих двигателях).
8) Регулятор топливного давления.
9) Обратный топливный трубопровод.

Топливо перекачивается из бака электрическим топливным насосом, который регулируется реле размыкания цепи. Топливо проходит через топливный фильтр на топливную направляющую (в трубопровод подачи топлива) и вверх к регулятору давления, где оно удерживается под давлением. Регулятор давления поддерживает давление топлива в направляющей на определенном уровне выше уровня давления во всасывающем коллекторе. Таким образом, достигается постоянное снижение давления на топливных форсунках вне зависимости от нагрузки на двигатель. Излишек топлива, не израсходованный двигателем, возвращается в бак по обратному топливному трубопроводу. Демпфер пульсаций, установленный на топливной направляющей, используется в некоторых двигателях для гашения скачков давления в топливной направляющей при открытии и закрытии форсунок.

Топливные форсунки, непосредственно контролирующие измерение топлива, попадающего во всасывающий коллектор, получают импульсы от электронного управляющего блока (ECU). Блок ECU завершает схему заземления форсунки в течение рассчитываемого периода времени, который называется продолжительностью впрыска или длительностью импульса впрыска. Блок ECU определяет пропорцию воздуха/топлива для работы двигателя на основании состояния двигателя, отслеживаемого входными датчиками, и параметров, сохраненных в памяти устройства.

Во время холодного запуска двигателя многие двигатели используют форсунку холодного запуска, предназначенную для улучшения пусковых характеристик при температуре охлаждающей жидкости ниже требуемой.

Компоненты контроля подачи и впрыска топлива
Топливные насосы

В течение многих лет компания Toyota использовала в системах EFI два типа электрических топливных насосов. В более ранних стандартных системах EFI использовался многорядный насос, установленный снаружи. Этот камерный насос включал в себя демпфер импульсов давления или глушитель, предназначенный для выравнивания импульсов давления и обеспечения бесшумной работы.

В двигателях, установленных на более поздних моделях, использовался встроенный насос, объединенный с устройством подачи топлива. Этот турбинный насос работает на более низких разрядных импульсах и более бесшумно, чем многорядный насос. Техническое обслуживание встроенных насосов производится после удаления устройства подачи топлива из бака. Перед установкой насоса на место необходимо убедиться, что соединительный шланг насоса в исправном состоянии.

У обоих насосов есть много общих характеристик. Они относятся к погруженным насосам, поскольку электромотор погружен в топливо. Пропуская топливо через насос, мотор получает охлаждение и смазку.

В выпускное отверстие вмонтирован обратный клапан для поддержания остаточного давления при выключенном двигателе. Это снижает возможность образования паровой пробки и улучшает пусковые характеристики. Клапан сброса давления используется для предотвращения чрезмерного давления и возможных утечек топлива в случае блокировки нагнетательного или обратного трубопровода.

Электрические регуляторы топливного насоса и реле размыкания цепи
Цепи с реле размыкания цепи. В двигателях Toyota с системой EFI используются три типа цепи регулирования топливного насоса. Один тип регулирования применяется только во впрыском типа L, использует контакт Fc расходомера воздуха для замыкания обмотки заземления реле размыкания цепи. Это устройство безопасности, которое предохраняет топливный насос от работы при неработающем двигателе.

Второй тип регулировки топливного насоса использует электронный управляющий блок (ECU) для контроля тока обмотки реле размыкания цепи управления. Он применяется в двигателях, оснащенных системой EFI типа D, а также в системах 7M-GTE, где используется вихревой расходомер воздуха Кармана. Это устройство безопасности предотвращает работу топливного насоса в тех случаях, когда блок ECU не получает сигнала Ne (обороты двигателя). В этих условиях блок ECU снимает заземление с обмотки реле размыкания цепи.

Контроль скорости работы топливного насоса
Третий тип цепи регулирования топливного насоса использует электрическую цепь двухскоростного насоса. В зависимости от двигателя реле размыкания цепи может приводиться в действие блоком ECU или контактом Fc расходомера воздуха. Однако ток насоса подается либо через токоограничивающий резистор, либо напрямую на насос, в зависимости от нагрузки на двигатель, оборотов двигателя и состояния сигнала STA.

Когда двигатель запускается или работает на высокой скорости и/или при больших нагрузках, блок ECU отключает TR1, замыкая контакт "А"реле управления топливного насоса. Это позволяет току проходить прямо на топливный насос, заставляя его работать на высокой скорости.

В других эксплуатационных условиях блок ECU включает TR1, который подает питание на реле управления топливного насоса. Это замыкает контакт В реле и заставляет ток проходить через резистор, при этом насос работает на низкой скорости. Система контроля скорости топливного насоса предназначена для снижения потребления электричества и износа насоса при низкой потребности в топливе и для подачи соответствующего объема топлива при высокой потребности в топливе.

Контрольные клеммы топливного насоса
Для облегчения контроля и обеспечения работы насоса независимо от расходомера воздуха или блока ECU во всех двигателях используется линейный испытательный искатель топливного насоса.

Существует два основных типа контрольных схем топливного насоса. В последних моделях двигателей с системой компьютерного управления марки «Тойота» используется контрольная клемма Fp, расположенная в испытательном искателе. При включенном зажигании клеммная перемычка от +В на клемму Fp направляет ток напрямую на топливный насос.

В более ранних двигателях используется клеммная перемычка, относящаяся к испытательному искателю топливного насоса 2Р. Эта перемычка при переключении подает заземление на обмотку реле размыкания цепи, что позволяет ей работать независимо от контакта Fc расходомера воздуха.

Топливный фильтр
Топливный фильтр, установленный между насосом и топливной направляющей, удаляет загрязнения из топлива до его подачи в форсунки и регулятор давления.

Хотя топливный фильтр может загрязниться или даже полностью засориться, это крайне маловероятно из-за высокой пропускной способности и качества фильтров марки «Тойота». Считается, что этот фильтр не требует технического обслуживания, и между периодической замены не рекомендуется периодическое обслуживание.

В случае, если фильтр ограничивает поток топлива, двигатель может испытывать неконтролируемые колебания частоты вращения, потерю мощности при нагрузке и серьезные проблемы с запуском. Если необходимо заменить фильтр, учитывайте некоторые важные меры предосторожности.

Меры предосторожности : Открытый нагнетательный топливный трубопровод представляет угрозу воспламенения. Поэтому важно сбросить давление в топливной системе, прежде чем открывать трубопровод рядом с фильтром. Также важно отсоединить отрицательный кабель аккумулятора до открытия трубопровода, поскольку некоторые фильтры расположены вблизи клеммы +В стартера.

Трубопровод подачи топлива (топливная направляющая)
Трубопровод подачи топлива, общеизвестный как направляющая-распределитель для топлива, предназначена для удержания форсунки на месте во всасывающем коллекторе. На трубопроводе подачи топлива установлены демпфер пульсаций (если он используется) и регулятор давления топлива. Трубопровод подачи топлива действует как резервуар для топлива, которое удерживается под давлением до подачи с помощью топливной форсунки.

Регулятор давления топлива
Регулятор давления топлива – это мембрана, приводимая в действие клапаном сброса давления. Для обеспечения точного измерения топлива регулятор давления топлива поддерживает постоянную разницу давления в топливных форсунках. Это означает, что давление в топливной направляющей всегда находится на постоянном уровне, превышающем уровень абсолютного давления в коллекторе.

Указанная разница в давлении составляет 36 фунтов на кв. дюйм (2,55 кг/кв.см) или 41 фунтов на кв. дюйм (2,90 кг/кв.см) в зависимости от применения двигателя. Поддержание разницы давления осуществляется за счет балансировки пружины с помощью давления во впускном трубопроводе. Пружина соединена с мембраной, в основании которой находится шаровой клапан.

Демпфер пульсации
Хотя давление топлива поддерживается на постоянном уровне с помощью регулятора давления, пульсация форсунок вызывает незначительные колебания давления в направляющей. Демпфер пульсации действует как аккумулятор для выравнивания этих колебаний, что обеспечивает точное измерение топлива.

Демпфер пульсации применяется не на всех двигателях, но его можно использовать для быстрой проверки давления топлива в тех двигателя, где он установлен. При наличии давления головка болта в центре мембраны поднимается вместе с крышкой корпуса демпфера.

Система повышения давления топлива
Система повышения давления топлива (FPU) предназначена для снижения возможности образования паровой пробки в топливной направляющей после испарения топлива на горячем двигателе и применяется на многих двигателях с системой компьютерного управления марки Toyota. Она использует клапан переключения вакуума (VSV), регулируемый блоком ECU для открытия жиклера атмосферного давления в трубопроводе, идущем к регулятору давления топлива.

Этот соленоид приводится в действие во время запуска горячего двигателя и работает до двух минут после запуска. Блок ECU заземляет клапан переключения вакуума системы повышения давления на основании сигналов, получаемых от датчиков THW и STA. Подача питания на соленоид впускает атмосферное давление в вакуумную камеру регулятора давления топлива, что повышает давление топлива в направляющей до максимального уровня.
В некоторый двигателях блок ECU также отслеживает сигналы нагрузки и оборотов двигателя (сигналы Vs, PIM и Ne) и подает питание на клапан переключения вакуума при большой нагрузке и высоких оборотах двигателя для обеспечения максимального давления топлива в направляющей.

Контроль давления и объема топлива
Меры предосторожности: До установки датчика давления топлива и проверки давления топлива необходимо осторожно сбросить остаточное давление, чтобы снизить опасность воспламенения при открытии топливного трубопровода. При открытии топливной системы рекомендуется иметь под рукой огнетушитель.
Обычно датчики располагаются на топливной направляющей, топливном фильтре или клапане холодного запуска. Необходимо следовать инструкция руководства по ремонту. Если соединение шланга защищено медной уплотнительной прокладкой, при установке шланга на место после ремонта можно использовать новую прокладку.

Контроль давления и объема топливо можно разделить на шесть отдельных участков.

Приведенные тесты и спецификации являются общим руководством; точные спецификации и операции смотрите в руководстве по ремонту.

Источник enc.drom.ru

Устройства и приборы высокого давления

Форсунки дизельного двигателя

Назначение форсунок и требования к ним

Форсунка служит для подачи топлива в цилиндр двигателя, распыления и распределения топлива по камерам сгорания.

Условия работы форсунок очень тяжелые – они подвержены воздействию колоссальных давлений и тепловых нагрузок. Впрыск начинается при температуре в камере сгорания 700…900 ˚С и давлении 3…6 МПа, а заканчивается при температуре до 2000 ˚С и давлении 10…11 МПа.

К форсункам предъявляются следующие очень жесткие требования:

  • оптимальная дисперсность, т. е. высокая степень дробления капель топлива, так как чем меньше капли, тем больше их суммарная поверхность, быстрее происходит нагрев и сгорание топлива, но при этом уменьшается длина факела;
  • обеспечение такой скорости струи топлива, чтобы оно достигало краев камеры сгорания, поэтому капли не должны быть слишком мелкими – средний размер капель (с учетом требования по первому пункту) – 30…50 мкм;
  • распределение впрыскиваемого топлива по всему объему камеры сгорания;
  • резкое начало впрыска и его прекращение.

Форсунки бывают открытые и закрытые.
Открытые форсунки обеспечивают постоянную подачу топлива. В современных дизелях такие форсунки не применяются.
В дизельных двигателях применяют закрытые форсунки, которые открываются только в момент подачи топлива в камеру сгорания.

Закрытые форсунки могут быть двух типов – одно- и многодырчатые. Первые устанавливают на двигателях с вихревыми камерами сгорания, вторые с неразделенными камерами сгорания.

Различают, также, механические форсунки и форсунки, управляемые электроникой.
Современные системы питания дизельных двигателей используют впрыск, управляемый компьютером (электронным блоком управления). На основании информации, поступающей от многочисленных датчиков, такие системы учитывают многие процессы и текущие параметры работы двигателя. Форсунки в таких системах управляются специальными электромагнитными или пьезоэлектрическими устройствами, что открывает широкие возможности повышения эффективности работы двигателя, а также его экологичности.

К отдельной категории устройств для впрыска топлива в цилиндры относятся насос-форсунки, представляющие собой своеобразный гибрид между ТНВД и форсункой в одном узле.

История изобретения форсунки

Как известно, Рудольф Дизель изначально планировал работу своего знаменитого детища на угольной пыли. Его система питания содержала специальный насос, вдувавший угольную пыль в цилиндр двигателя сжатым воздухом. Однако, уголь оказался низкокалорийным топливом, не способным дать высокой температуры сгорания, и Дизелю пришлось обратить свой гениальный взор к жидким топливам. Ведь разница температур в цикле работы двигателя – прямой путь к повышению КПД, как установил француз Николя Сади Карно.

Сначала Дизель попробовал впрыскивать в цилиндр своего двигателя бензин, но при первом же испытании двигателя произошел взрыв, едва не стоивший жизни самого Дизеля и его помощников, и изобретателю пришлось применить менее взрывоопасное топливо – керосин.
В июне 1894 года Дизель построил двигатель, использующий в качестве топлива керосин, который впрыскивался в цилиндры специальной форсункой. Для впрыскивания керосина применялся пневматический компрессор, развивавший давление, превышающее давление в цилиндре двигателя. За такими двигателями закрепилось название «компрессорные дизели».

Идея гидравлического впрыска топлива в дизельных двигателях принадлежит, как утверждает история, французскому инженеру Сабатэ, который, к тому же, предложил многократный впрыск, т. е. впрыск, осуществляемый в несколько этапов (эта идея используется в современных системах питания — Common Rail и насос-форсунка).

В 1899 году русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой. Эти форсунки устанавливались на дизелях, выпускавшихся Механическим заводом «Людвиг Нобель» в Петербурге в начале прошлого века («русские дизели»).

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, а также создал удачную модификацию бескомпрессорной форсунки. Эти устройства с различными усовершенствованиями используются в системах питания дизельных двигателей и в наши дни.

Дизельные двигатели, использующие в системе питания повышение давления топлива перед впрыском, называют «бескомпрессорными дизелями».
В настоящее время классические компрессорные дизели не имеют практического применения. В современных двигателях впрыск осуществляется бескомпрессорными способами.

Однако, наука и техника не стоят на месте, и, благодаря широкой компьютеризации всех систем автомобиля, в настоящее время механические форсунки постепенно вытесняются более совершенными устройствами, управляемыми электроникой.

Принцип действия многодырчатой форсунки

В многодырчатой форсунке основной частью является распылитель. Он состоит из корпуса 1 (рис. 1, а) и иглы 2. Распылитель притянут к корпусу 7 форсунки накидной гайкой 3. Сверху на иглу давит пружина 12 (рис. 1, б). Топливо в полость Б форсунки подается по каналу В.
Когда нет подачи топлива насосом (рис. 1. I), давление в полости Б составляет 2…4 МПа. Топливо давит на нагрузочный поясок Г иглы, но эта сила меньше силы пружины, которая прижимает иглу к распылителю. Игла запорным конусом Д перекрывает выходные отверстия – сопло А.

При подаче топлива насосом сила давления топлива на поясок Г становится больше силы пружины, игла поднимается, и через сопло А с большой скоростью топливо впрыскивается в камеру сгорания. После окончания подачи топлива давление падает, пружина возвращает иглу на место, запирая выходные отверстия распылителя, и впрыск прекращается.

Подъем иглы ограничен упором ее верхних заплечиков в корпус 5 форсунки и составляет 0,2…0,25 мм.

Качество дробления топлива зависит от скорости его движения через сопла, которая, в свою очередь, зависит от давления впрыска. При нормальном режиме скорость струи топлива составляет 200…400 м/с. Для этого необходимо создать перепад давлений в форсунке и камере сгорания 5…10 МПа. Поскольку давление в цилиндре в момент впрыска достигает 3…5 МПа, давление топлива в форсунке должно быть более 10…20 МПа.
Чтобы обеспечить работу форсунки при таком давлении, корпус распылителя и игла выполнены очень точно и притерты друг к другу. Они являются третьей прецизионной парой в магистрали высокого давления. Игла и корпус распылителя не подлежат разукомплектованию и подлежат замене только в комплекте.

Устройство многодырчатой форсунки

На двигателях с неразделенными камерами сгорания устанавливают, как правило, многодырчатые форсунки. Так, на двигателях КамАЗ-740 устанавливается форсунки серии 33, на двигателях ЗИЛ-645 и ЯМЗ-240 – форсунки Б-2СБ, на двигателях ЯМЗ-238 – форсунки модели 80 (см. рисунок 2 внизу страницы).

К корпусу 7 форсунки накидной гайкой 3 притянут распылитель с иглой 2. Распылитель имеет четыре сопловых отверстия диаметром 0,3 мм. На иглу через штангу 13 давит пружина 12. Топливо от насоса подается в полость форсунки через штуцер 9, в котором установлен фильтр 10. Верхнее отверстие в корпусе служит для отвода в бак топлива, просочившегося через зазоры между иглой и распылителем. Штифты 4 и 6 определяют точное положение распылителя относительно корпуса и топливных каналов. Прокладками 11 регулируют натяжение пружины, которое определяет давление начала впрыска.

Форсунки устанавливают в специальные гнезда головки цилиндра и закрепляют скобами.
Между корпусом форсунки и головкой блока размещается уплотнительная медная шайба (кольцо), которая надевается на корпус распылителя и вместе с форсункой аккуратно вставляется в гнездо головки. Такая шайба служит не только уплотнителем между форсункой и головкой, но и обеспечивает хороший теплоотвод от распылителя к головке цилиндров.
Уплотнительное кольцо 8 предохраняет полость клапанной крышки от попадания в нее пыли и влаги.

Устройство однодырчатой штифтовой форсунки

Однодырчатые форсунки иногда называют штифтовыми, поскольку конец ее иглы выполняется в виде штифта. Такие форсунки устанавливают, как правило, в дизелях с разделенными камерами сгорания.
Конструкция распылителя таких форсунок обеспечивает объемно-пленочное смесеобразование, поскольку распыливание топлива более направленное, чем в многодырочных форсунках, и значительная часть топлива достигает стенок камер сгорания, образуя быстро испаряющуюся пленку.

Дизели с вихревыми (раздельными) камерами сгорания менее чувствительны к составу топлива и устойчивее работают в широком диапазоне частот вращения. Применяемые с ними форсунки рассчитаны на меньшее давление, следовательно, не требуют столь высокой точности изготовления, как форсунки для неразделенными камерами сгорания, а потому дешевле.

На рис. 1,в показан распылитель штифтовой однодырчатой форсунки. Такая форсунка устанавливается в вихревых камерах сгорания и имеет одно сопло.
Конец иглы 2 выполнен в виде штифта 13 конусной формы, выступающего за пределы корпуса распылителя. Штифт служит для формирования факела топлива в виде конуса.
Принцип работы однодырчатых форсунок не отличается от принципа работы многодырчатых форсунок.

Устройство некоторых типов форсунок, применяемых на автотракторных дизельных двигателях отечественного производства приведено на рисунке 2.

Источник k-a-t.ru

  • Устройство форсунки инжектора — что подает топливо в мотор?
  • 1. Типы инжекторных форсунок
  • 2. Принцип работы форсунки инжектора
  • 3. Как устроена форсунка инжектора

Как правило, на сегодня, большое количество автомобилей оборудуются специальными системами впрыска горючего. Интересно будет узнать, о том что идея о внедрении такой системы в автомобильный мир появилась уже в далеких 50-х годах. Так, 1951 год стал годом рождения первой системы впрыска топлива, именно в этом году компания Bosch укомплектовала ею 2-х тактный двигатель купе Goliath 700 Sport.

Последователем Bosch стал Mercedes-Benz 300 SL, который подхватил эстафету в 1954 году. И вот, уже в конце 70-х годов началось массовое, серийное введение инжекторных систем впрыска топлива. Как оказалось на практике, впрыск топлива имеет множество достоинств и отличных характеристик, по которым такая система превосходит карбюраторную подачу топлива. От карбюраторного принципа смесеобразования система впрыска топлива отличается более безошибочной дозировкой топлива, а следовательно, и большей экономичностью и приемистостью автомобильного транспорта. Также система впрыска топлива славится меньшей токсичностью выхлопных газов. Можно сделать такой вывод, что переоценить работу системы впрыска топлива практически невозможно.

Форсунка является одной из аниболее важных частей системы впрыска топлива, поэтому она во многом и определяет эффективность и надежность работы движка. Однако, именно она работает в наиболее тяжелых условиях. Каждому автолюбителю важно знать что это за деталь и как она работает, дабы в случае какой-либо неисправности системы впрыска топлива произвести правильную диагностику поломки, ведь именно от состоянии форсунки зависит хорошая работоспособность самой системы. В данной статье мы акцентируем внимание именно на строении форсунки, ее видах и принципе работы. Итак, начнем.

1. Типы инжекторных форсунок

Как правило, форсунка приводится в эксплуатацию в системах впрыска топлива как дизельных, так и двигателей, работающих на бензине. Если говорить о современных двигателях, установленные в них форсунки руководствуются электронным управлением впрыска. Данную деталь принято разделять на три типа, в зависимости от способа произведения впрыска.

Итак, существуют такие три вида форсунки:

1. Электрогидравлическая

2. Электромагнитная

3. Пьезоэлектрическая

Теперь о каждом виде поподробнее.

Форсунка электромагнитная

Данную форсунку, как правило, принято устанавливать именно на бензиновых движках, в том числе укомплектованных системой непосредственного впрыска. Сама по себе электромагнитная форсунка имеет довольно обычное строение и состоит непосредственно из электромагнитного клапана с иглой и сопла. Работает такая форсунка по своеобразному принципу. В соотношении с заложенным алгоритмом, установленный электронный блок управления способен обеспечить в нужный момент передачу напряжения прямиком на обмотку возбуждения клапана. В этот момент создается своеобразное электромагнитное поле, которое может преодолевать усилие пружины, втянуть якорь с иглой и отпустить сопло. После проделанной операции осуществляется впрыск топлива. После того момента, как напряжение исчезнет, пружина возвращает иглу форсунки обратно на седло.

Форсунка электрогидравлическая

Как правило, электрогидравлическую форсунку принято приводить в действие на двигателях использующих дизель, в том числе и таких, которые укомплектованы системой впрыска Common Rail. Сама по себе электрогидравлическая форсунка состоит из впускной и сливной дроссели, камеры управления, а также электромагнитного клапана. Такая форсунка приводится в эксплуатацию по принципу применения в процессе работы давления топлива, как при произведении впрыска, так и при его окончании.

Как правило, на начальной позиции электромагнитный клапан обесточен и находится в закрытом состоянии, игла форсунки прислоняется к седлу благодаря мощности давления топлива на поршень, которое имеет место в камере управления. В этом случае впрыск топлива не производится. В этот момент давление топлива на иглу ввиду несоответствии площадей контакта порядка меньше чем давление на поршень.

Электронный блок управления посылает сигнал и по его команде в работу включается электромагнитный клапан, который осуществляет открытие сливной дроссели. В свою очередь, топливо, которое выходит из камеры управления, начинает проходить через дроссель прямиком в сливную магистраль. В таком случае, дроссель способна воспрепятствовать скорой стабилизации давлений в камере управления и впускной магистрали. Таким образом, происходит снижение давления на поршень, но давление топлива на иглу остается на прежнем уровне. Под воздействием давления игла двигается вверх и происходит впрыск топлива.

Форсунка пьезоэлектрическая

Пьезоэлектрическая форсунка является самым совершенным и надежным устройством, которое способно обеспечить впрыск горючего. Такую форсунку, как правило, устанавливают на двигателях, использующих дизель, которые укомплектованы системой впрыска Common Rail. Такой вид форсунки имеет много достоинств, среди которых имеет место быстрота срабатывания Данная форсунка превосходит всех своих оппоненток и является самым надежным устройством, обеспечивающим впрыск горючего.

Преимуществом пьезофорсунки является быстрота срабатывания, которая в четыре раза превышает быстроту электромагнитного клапана. Из этого следует осуществимость многократного впрыска горючего в период одного цикла, а также безошибочная дозировка впрыскиваемого горючего.

Вся операция происходит благодаря использованию пьезоэффекта в руководстве форсункой, который был основан на изменении показателей длины пьезокристалла под воздействием напряжения. Вся конструкция пьезоэлектрической форсунки состоит из пьезоэлемента, переключающего клапана, толкателя, а также иглы, которые умещаются в корпусе. Пьезофорсунка приводится в работу по такому же принципу как и электрогидравлическая, а именно по гидравлическому. В связи с высоким давлением горючего, игла, находящаяся на исходной позиции, посажена на седло.

Во время подачи электрического сигнала на пьезоэлемент, производится увеличение его длины, при этом это позволяет пьезоэлементу толкать усилие непосредственно на поршень толкателя. В этот момент, переключающий клапан приходит в открытое состояние и топливо проходит в сливную магистраль. При этом падает давление, которое находится выше иглы. При этом, за счет давления в нижней части игла идет вверх и происходит впрыск горючего. Как правило, количество впрыскиваемого топлива может определяться длительностью воздействия на пьезоэлемент, а также уровнем давления горючего в топливной рампе.

2. Принцип работы форсунки инжектора

Для того, чтобы разобраться в принципе работы форсунки, нужно в общем понять работу всей системы впрыска топлива. Итак, данная система производит подачу горючего в цилиндр двигателя либо во впускной коллектор по принципу прямого впрыска благодаря форсунке, или как принято называть еще, инжектора. Исходя из этого, все автомобили, которые комплектуются такой системой, получают название инжекторных.

Классифицирование инжекторного впрыска проводится в зависимости от того, какой принцип работы инжектора, а также по месту его установки и суммарному количеству инжекторов. Как правило, центральный впрыск топлива осуществляется по такому принципу: во всеобщий впускной трубопровод, с помощью форсунки впрыскивается топливо на все цилиндры двигателя.

Форсунку, как мы уже упоминали, принято устанавливать именно перед дроссельной заслонкой, в том месте, где должен находиться карбюратор. Она показывает низкое сопротивление обмотки электромагнита (до 4-5 Ом). Как же распределяется впрыск? С помощью отдельных форсунок происходит впрыск топлива во впускные трубопроводы каждого имеющегося цилиндра. Они занимают место у основания впускных трубопроводов (как правило, у корпуса головки блока цилиндров) и отличаются довольно-таки высоким сопротивлением обмоток электромагнитов (до 12-16 Ом). Он может быть и меньшим, но при условии наличия дополнительного блока сопротивлений.

Как известно, большинство современных автомобилей снабжаются системой именно распределенного впрыска топлива. Как мы уже говорили, она работает по принципу, что отдельная форсунка отвечает за свой цилиндр. Важно знать, что каждая система распределенного впрыска топлива делится на четыре разных типа:

1. Одновременный

2. Попарно-параллельный

3. Фазированный

4. Прямой

Теперь о каждом поподробнее. Одновременный тип характеризируется подачей горючего от всех форсунок системы одновременно во все цилиндры. Что ж, название говорит само за себя. Попарно-параллельный тип впрыска подразумевает парное открытие форсунок, при котором, одна открывается непосредственно пред циклом впуска, а вторая — перед циклом впуска. Главной отличительностью этого типа является применение попарно-параллельный принцип открытия форсунок в момент запуска двигателя, или же в период аварийного режима неисправности датчика положения распредвала. В период эксплуатации автомобиля, то есть во время движения, в работу включается фазированный впрыск топлива. Это тип впрыска. При котором каждый инжектор открывается перед тактом впуска. Наконец, прямой тип впрыска происходит непосредственно в камеру сгорания.

Некоторые автомобили новейшего поколения могут похвастаться подачей топлива непосредственно в камеру сгорания (это и есть непосредственный впрыск). Отличительной чертой форсунок таких двигателей является наличие высокого рабочего напряжения электромагнита, которое достигает до 100 В. Маркировки форсунок отражают фабричную, или торговую, марку либо название, а также каталожный номер, или наименование и номер серии.

Как правило, горючее подается к форсунке под определенным давлением, которое зависит от режима работы движка. Принцип действия инжектора предполагает использование сигналов микроконтроллера, который в свое время получает данные от датчиков. Поступившие на электромагнит электрические импульсы, которые исходят от блока управления, заставляют работать игольчатый клапан, который открывает и закрывает канал форсунки. Все количество топлива которое распыляется зависит от длительности импульса, которая задается непосредственно блоком управления. Если говорить о форме и направлении распыляемого факела очень важны при смесеобразовании и определяются количеством и расположением распылительных отверстий.

Как правило, если топливо впрыскивается во всеобщий трубопровод с помощью одной форсунки, то это называется системой моновпрыска. Такая система на сегодня не пользуется особым спросом среди автомобилестроителей. Большинство автопроизводств предпочитают использовать сразу две форсунки в системе впрыска.

Как ни крути, но как и любая другая система, инжекторная ситсема имеет и свои недостатки, среди которых достаточно высокая цена на узлы инжектора, низкая уровень ремонтопригодности, высокие запросы по поводу состава и качества горючего, крайняя необходимость использования специального оборудования для диагностики каких-либо поломок, и, конечно же, довольно высокие ценовые показатели стоимости ремонта.

3. Как устроена форсунка инжектора

А теперь давайте рассмотрим конструкцию форсунки, из чего же она состоит. Каждому автолюбителю известно, что подача топлива в форсунках происходит преимущественно сверху вниз. Если говорить в общих чертах, можно сказать, что форсунка состоит из одного, реже двух каналов. Как правило, по первому к выходу подходит распыляемая жидкость, а по второму проходят жидкость, пар, газ, который служит для распыления первой жидкости. Как показывает практика, чистая и качественная форсунка способна дать конусообразный распыл, а факел получается непрерывный и ровный.

Если детализировать построение форсунки, можно сказать, что она, в первую очередь состоит из корпуса. В верхней части корпуса можно отыскать так называемый гидравлический разъем, который, в свою очередь, закрепляется к топливной рампе. Благодаря наличию насоса и обратного клапана в рампе непрерывно поддерживается установленное давление горючего. Известно, что форсунка прикрепляется к топливной рампе посредством специального зажимного устройства.

Нижнюю часть форсунки занимает распылительная пластина с отверстиями для впрыскивания топлива. Для того, чтобы обеспечить герметичность соединения сверху и снизу находятся специальные уплотнительные кольца. С одной стороны форсунки находится электрический разъем, который используется для управления соленоидом форсунки. Весь основной механизм находится внутри форсунки и состоит из фильтрующей сетки, электромагнитной обмотки, седлом клапана, пружины, игольчатого клапана с якорем соленоида и запорным сферическим элементом, а также распылительной пластины. Сопло принято считать самым важным элементом форсунки.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте и Instagram: все самые интересные автомобильные события собранные в одном месте.

Источник auto.today

Комментировать
0
92 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector